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Abstract
Most natural images have 1/f  Fourier image statistics, a signature which is mimicked by fractals
and which forms the basis for recent applications of fractals to camouflage. To distinguish a
fractal camouflaged target (with 1/f * statistics) from a 1/f  natural background (or another
target), the exponents of target and background (or other target) must differ by a critical amount
(d *), which varies depending on experimental circumstances. The same constraint applies
for discriminating between friendly and enemy camouflaged targets. Here, we present data for
discrimination of both static and dynamic fractal images, and data on how discrimination varies
as a function of experimental methods and circumstances. The discrimination function has a
shallow minimum near =1.6, which typifies images with less high spatial frequency content
than the vast majority of natural images (  near 1.1). This implies that discrimination between
fractal camouflaged objects is somewhat more difficult when the camouflaged objects are
sufficiently similar in statistics to the statistics of natural images (as any sensible camouflage
scheme should be), compared to the less natural  value of 1.6. This applies regardless of the 
value of the background, which has implications for fratricide; friendlies and hostiles will be
somewhat harder to tell apart for naturalistically camouflaged images, even when friendlies and
hostiles are both visible against their backgrounds. The situation is even more perverse for
“active camouflage”. Because of perceptual system nonlinearities (stochastic resonance),
addition of dynamic noise to targets can actually enhance target detection and identification
under some conditions.
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Introduction
Discrimination tasks in combat target identification are legion. For example, operators need to
discriminate a target against a background and to discriminate a set of similar targets from one
another. The first task is a necessary, but not sufficient condition for targeting, while the second
task is essential to solve decoy and friendly-fire problems. Both tasks are complicated by
camouflage. If it were necessary to consider the set of all possible targets, backgrounds and
camouflage, the combinatorial problem would be disheartening. However, a consideration of
visual psychophysics, image science and fractal mathematics suggests that a particularly simple
optical signature provides a low-dimensional solution.

Figure 1.  An Expeditionary Fighting Vehicle (General Dynamics, Inc.) concealed against
foliage with two different camouflage schemes. The rear of the vehicle is in standard single-scale
NATO camouflage and pops-out from the foliage background. The front of the vehicle (see figure
bottom) is concealed by a two-scale MARPAT camouflage pattern and is less conspicuous
(O’Neill et al., 2004). If the number of scales increases, the perception of fractal-like camouflage
is less distance dependent. Courtesy of the United States Marine Corps Systems Command.

Background: Perceptual Popout, Fractals and Camouflage
It is well known that humans effortlessly (and preattentively) discriminate images which differ
significantly in their second-order statistics (the so-called "pop-out" phenomenon), while images
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that have similar second-order statistics must usually be compared on a more laborious point-by-
point basis (Julesz & Caelli, 1979; Caelli, 1981). Most natural (and many artificial) images have
surprisingly regular 1/f  Fourier spatial amplitude spectra (Table 1; see Field & Brady, 1997 and
Billock, 2000 for review), a signature which is mimicked by random fractals and which forms
the basis for fractal forgeries (Voss, 1985) and digital camouflage. The exponent  (the slope of
the Fourier spectra when plotted on log-log coordinates) is a second-order statistic. A growing
body of evidence suggests that humans are adapted to this statistical regularity in the
environment and that this evolutionary/developmental adaptation forms the basis for neural
image enhancement and debluring (Billock, 2000; Billock et al., 2001a,b; Campbell et al., 1978;
Hammett & Bex, 1996). A hallmark of random fractal images is the presence of statistically
similar features at every spatial scale. The lawful relationship between spatial scales is termed
self-similarity and is one of the properties of natural images that give rise to 1/f  spectra. This
property is what enables random fractals to mimic natural images and backgrounds. For
example, a tree branch gives rise to several smaller branches, which give rise to many twigs – a
random fractal that distributes and scales its features similarly can emulate foliage and act as
camouflage. The  value (or equivalently, fractal dimension) is often used as a mathematical
measure of image texture and its perceptual correlates (Cutting & Garvin, 1987; Kumar et al.,
1993; Pentland, 1988; Rogowitz & Voss, 1990; Taylor et al., 2005). It follows that some aspects
of fractal image discrimination can emulate natural image discrimination (Hansen & Hess, 2006;
Thomson & Foster, 1997; Parraga & Tolhurst, 2000; Tolhurst & Tadmor, 2000).

Table 1.  Second-order statistics of natural images

Study           Number of images ±1sd

Burton & Morehead (1987) 19 1.05±.12
Field & Brady (1997) 20 1.10±0.14
Parraga (1998) 29 1.11±0.13
Ruderman (1994) 45 0.905
Webster & Miyahara (1997) 48 1.13
Thomson & Foster (1997) 82 1.19
Field (1993) 85 1.10
van Hateren (1992) 117 1.065±.18
Tolhurst et al. (1992) 135 1.20±.13
Schaaf & Hateren (1996) 276 0.94±0.21
Dong & Atick (1995) 320 1.15
Weighted average 1176 1.08

If natural backgrounds are fractal-like, camouflage should be designed along similar principles.
Newer camouflage schemes like MARPAT (U.S Marines) and CADPAT (Canadian Armed
Forces) use a two-scale scheme which is noticeably better at blending into terrain and foliage
than the older single-scale schemes. For example, detection times for MARPAT (Fig. 1)
camouflaged targets are about 2.5 times longer than detection of NATO single-scale camouflage
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and recognition times following detection increase by an additional 20% (O’Neill et al., 2004).
Some newer camouflage schemes – inspired by fractals – have more than two scales. (True
fractal camouflage would be defined by statistical similarity at every visible spatial scale, but
limited size and printing resolution result in a restricted range of scales.)  More complicated
schemes are possible, including the use of multi-fractals which mimic blends of particular
textures that occur in natural images (e.g., plant growth on fractured rock). Here, we study
human abilities to discriminate images based on small differences in the  signature and place
the results in context with camouflage and with earlier texture discrimination studies.

Figure 2. Fractal textures like those used in the experiments. Each fractal in this figure has 1/fβ

amplitude spectrum and identical phase spectra, and is synthesized by spatial frequency filtering
the same set of random gray levels. The lack of weight in the higher spatial frequencies can
easily be seen in the coarseness of the images as the exponent β increases.
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Methods

Participants
The four observers were all myopes corrected to at least 20/20 binocular acuity. All are
professional psychophysicists and highly experienced observers, with prior work in the
psychophysics of "white" and "colored" (spatiotemporally non-uniform) visual noise. One
subject (SF) was naïve to the purpose of the experiment. Another subject (VB) has a diagnosed,
mild, congenital visual condition – optic nerve hypoplasia (a low density of neurons in the optic
nerve). Although his vision is considered normal by standard clinical measures (including
acuity), his contrast sensitivity is slightly depressed (about 1 sd) at all spatial frequencies relative
to a large sample of age-matched-normals; this depression in sensitivity is worse for higher
spatial frequencies. His vision is relevant here because it provides us a gauge of the effects of
spatial under-sampling in an otherwise intact visual system.

Apparatus
All stimuli were generated and presented on a Silicon Graphics O2 graphics workstation with a
linearized 30 Hz display. Stimuli were viewed binocularly with natural pupils in a well-lit room
(ambient luminance in the plane of the monitor was 3.5 cd/m2). Subjects were comfortably fixed
in place by a chin rest at two viewing distances, 40 cm and 100 cm. The far distance was a
limiting case (e.g., each pixel subtends 0.016 deg at 100 cm, matching the subjects' 1 arc min
spatial resolution). The stimuli consisted of static, grayscale, random-phase fractals (e.g., Fig. 2)
whose Fourier amplitude spectra were described by

A(fs) = kfs                                                                                                                 Eq. 1

Where k is a constant and fs is spatial frequency. (In visual psychophysics, amplitude rather than
power spectra are used, because amplitude is proportional to perceptual contrast for each spatial
frequency component.) For each stimulus, the average luminance was constant at 8.57 cd/m2 and
the Root Mean Square Contrast (a good measure of perceptual contrast for noise-like textures;
Moulden et al., 1990; Peli, 1990, 1997) was 10.98%. For consistency with another study, each
fractal contained 64x64 pixels (18x18mm). Thus, at 40 cm, the stimuli subtended 2.58O

embedded in a 43.9O horizontal by 36.4O vertical dark surround. At 100 cm, each stimulus
subtended 1.03O embedded in a 21.1O horizontal by 16.4O vertical dark surround. Both a
reference and a comparison image were generated for each trial. The images were created by
filling a 64X64 array with random white noise (256 gray-levels). This white-noise image was
Fourier-transformed and the amplitudes of all spatial frequencies were equalized to ensure that
the noise was uniformly flat. The resulting amplitude spectra were filtered so that they followed
a power law relationship (Eq. 1), and then inverse-Fourier transformed to produce the stimuli.

Procedure
Just noticeable discrimination thresholds (79% correct criterion) for fractal spatial exponents
were measured using a two-alternative forced-choice adaptive staircase procedure with a 1 db
step size (MacMillan & Creelman, 1991). Ten β exponents were used (0.4, 0.6, 0.8, 1.0, 1.2, 1.4,
1.6, 1.8, 2.0, and 2.2) for the reference images. For the comparison image, the fractal exponent
was equal to the exponent, β, of its reference image plus a small increment, ∆β. Observers were
asked to identify the image with the lower spectral exponent, and were provided with immediate
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feedback on the accuracy of their response. If the observer correctly identified the reference
image three times in a row, the difference between the two images’ exponents ∆β was decreased.
In contrast, ∆β was increased after each incorrect response. Each staircase continued for 8
reversals, with the mean of the last 6 reversals being used as a measure of the threshold. Two
presentation conditions (Sequential and Simultaneous) were used. In the Simultaneous condition,
the reference and comparison stimuli were presented side by side (1.1 mm apart) for 2.133
seconds. The location of the reference image (left versus right) was randomized across trials. In
the Sequential condition, the two stimulus images were sequentially presented in the center of
the screen for 2.133 seconds each. The screen was blanked for 500 ms between the two images
to prevent masking effects. The order of presentation of the reference and comparison images
was randomized across trials. Combining two viewing distances with two presentation modes
yielded four experimental conditions. Two observers were presented with the Near conditions
first, and two with the Far conditions first. For all observers, the presentation style (simultaneous
vs. sequential) alternated after each threshold. The order of presentation of the 10 exponents was
randomized for each of the 4 conditions. Each threshold was measured 3 times, with the
thresholds in all 4 conditions being completed once before being re-measured. This required
approximately 20 hours of data collection per subject, which was generally completed in 2 one-
hour sessions each day, over a two-week period.

Figure 3. Group averages for all 4 conditions.

Results and Analysis
General Findings
Discrimination thresholds (d ) are generally in the range of 0.05-0.20 for  values of 0.4-2.2 (see
Figs. 3, 4). The discrimination function is not flat; it has higher (worse) discrimination thresholds
for both low and high values of , and lower (better) discrimination thresholds for in-between
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values of B. The minimum is near =1.6, which typifies images with less high spatial frequency
content than the vast majority of natural images (  near 1.1). This implies that discrimination
between fractal camouflaged objects is somewhat more difficult when the statistics of
camouflaged objects are sufficiently similar to the statistics of natural images (as any sensible
camouflage scheme should be), compared to the less natural B value of 1.6. This applies
regardless of the background’s  value, which has implications for fratricide; friendlies and
hostiles will be somewhat harder to tell apart for naturalistically camouflaged images, even when
friendlies and hostiles are both visible against their backgrounds.

Figure 4. Individual data from all 4 observers for all 4 conditions.
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Effect of Viewing Distance
For ideal 1/f images, there should be little effect of viewing distance, because increasing viewing
distance would simply shift a lower spatial frequency component into a higher spatial frequency,
but the relationship between the spatial frequencies would be preserved. However, all physically
obtainable fractals are limited to a range of spatial scales set at the lower end by the size of the
image and at the upper end by the size of the pixels. Shifting the viewing distance from 40 to 100
cm therefore shifts the spatial frequency range of the fractal image by a factor of 2.5, but no
information is lost because the stimuli were designed so that the individual pixels were
resolvable at the far viewing distance by all observers. Accordingly, for three of the observers
(DC, PH, and SF), viewing distance had little effect, although there is a slight trend suggesting
lower thresholds in the nearer viewing distances (see Figure 4a-c). For VB, however, the Far
thresholds (and their variability) were noticeably elevated compared to either his Near thresholds
or to the other observers' Far thresholds (see Fig. 4). VB's anomalous results may be due to
sampling problems induced by a mild congenital defect – a developmental paucity of retinal
ganglion cells (optic nerve hypoplasia). Electrophysiological studies in VB and other hypoplastic
subjects and post-mortem histology in other hypoplastics indicate that both retinal pre-processing
and cortical post-processing seem to be normal (Billock et al., 1994) and point to reduction in
retinal ganglion cell numbers as the sole cause of abnormal vision in hypoplasia. In the case of
VB, perimetric thresholds are flattened relative to normals, suggesting the subject did not gain a
full measure of the elevated density of foveal ganglion cells that develops in normals. Since pixel
size and stimulus size are fixed, any sampling problems would more likely manifest as a
threshold elevation at the far viewing conditions. Moreover, if the reduced sampling is not
homogeneous, then this could increase variability (because, from trial to trial, filtered noise
features would fall on neighboring retinal locations with different retinal sampling densities).

Effect of Presentation Style
Simultaneous viewing simulates the task of making a side-by-side comparison of fractal
camouflaged targets, while sequential viewing simulates the task of comparing a target to one
that is in memory; in theory and experiment the two paradigms can lead to somewhat different
results (Garcia-Perez et al., 2005; Hansen & Hess, 2006). The discrimination function is similar
for both conditions (Figs. 3 and 4) but there is a small advantage for simultaneously-viewed
images, relative to sequentially-viewed ones, especially for small values of .  This tendency can
be clearly seen when the data from the 4 subjects are pooled (Fig. 3). This is contrary to Hansen
& Hess (2006), who found an advantage for sequential viewing, and attributed differences
between the two conditions to differences in the portions of retina they cover. However, our
near-sequential and far-simultaneous stimuli covered very similar regions of central retina (2.6o

and 2.3o respectively), and yet simultaneous viewing yielded lower thresholds for nine of ten
exponents (and tied for the tenth). This suggests that for our experiment, the memory demands of
sequential viewing were disadvantageous, a design consideration for combat target displays.

Discussion

Comparison to Related Studies: Static Fractals
Some prior studies of fractal discrimination overlap our work. Our discrimination functions
resemble those of Knill et al. (1990) , particularly their low-contrast near condition (17.5% RMS
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contrast at 1 meter with 64x64 pixel images), which is similar to our Far Sequential condition.
While the average exponent of natural scenes is around 1.1 (Table 1), the greatest sensitivity to
changes in a fractal image’s exponent are consistently found to be around 1.6 across a wide
range of conditions. We see no evidence for a second minimum at low  (circa 0.6) reported by
Tadmor and Tolhurst, even when we used a simultaneous viewing condition similar to Tadmor
and Tolhurst (1994). Nor is the discrepancy due to the angular size of the image, as all three
studies had stimuli that were similar in size. Hansen & Hess (2006) note that the spatial
presentation task uses two different parafoveal patches of retina, while the temporal task uses the
same patch of central fovea; they find that fovea and parafovea yield somewhat different patterns
of discriminability as a function of , but none of their data show a second minimum at low 
(rather, they find a maximum at =0.8, with better thresholds on either side, similar to our
findings). Another possible source of this difference in discriminability functions may be the
specific nature of Tadmor and Tolhurst’s task. In both the present study and Knill et al. (1990),
standard two-Alternative Forced-Choice psychophysical procedures were used. In contrast,
Tadmor and Tolhurst (1994) used an odd-one-out task (i.e., three images were presented
simultaneously, two of which had identical exponents – the task was to choose the image that
was different from the other two). In other words, Tadmor and Tolhurst’s task was one of simple
discrimination, while our task (and Knill’s) requires discrimination and some form of
identification (once the two images could be told apart, the subjects had to decide which had a
lower exponent). These tasks coincide in difficulty only if all information required for
identification is present at the discrimination threshold, which will most often take place when a
single channel mediates performance of the task. Indeed, Tolhurst and Tadmor (1997) have
shown that simple discrimination data is often consistent with a single channel mediating
discrimination.  However, since a comparison of channel outputs is required to estimate the
spectral exponent of an image, discrimination plus identification would likely require a
comparison of channel outputs, perhaps raising the JND for β near 0.4 sufficiently to eliminate
the second minimum that Tadmor and Tolhurst (1994) found.

Figure 5.  Camouflage can be dynamic in several ways, including simple movement. A
Jordanian F-16 painted in HyperStealth Biotechnology Corp.’s fractal-like camouflage.
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Comparison to Related Studies: Dynamic Fractals
So far we have discussed only perception of static fractals. But camouflaged images may move
against their backgrounds and camouflage may be dynamic in other ways.  In general, the effect
of motion on such fractals is described by ft= v*fs (where v is velocity and ft is temporal
frequency). Thus, if the spatial spectrum is a 1/f distribution, then for simple movement the
temporal frequency distribution is a linear transform of spatial frequency, which is no more
interesting than the viewing distance condition. There are however more interesting dynamic
manipulations of fractals that are worth study. For example, it is possible to extend our study of
discrimination to spatiotemporal fractals – fractals whose individual pixel intensities vary over
time in a manner described by fractional Brownian motion. Such images have Fourier amplitude
spectra of

A(ft,fs) = kft fs                                                                                                 Eq. 2

In general, as  becomes larger, the motion of the texture becomes more coherent and can be
used to mimic various biological motions (Billock et al., 2001a). Figure 6 shows the human
perceptual discrimination space for spatiotemporal fractals (dynamic textures).

Figure 6.  Discrimination contours for spatiotemporal fractal textures (Eq. 2) using the same
observers in Figures 3 and 4. The contours are estimated using JNDs for discrimination in four
directions in the perceptual space and are fit using simple quarter-circles of no theoretical
significance.
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To define two-dimensional JNDs we measured discrimination in four directions: both increments
and decrements for both spatial ( ) and temporal ( ) exponents. Not surprisingly, the JNDs in
this space are ellipsoidal (they resemble color discrimination JNDs). Interestingly, the interior
portion of the resulting two-dimensional discrimination space is remarkably flat, a feature that
some psychophysicists have gone to great lengths to obtain in nonlinear mappings of other
perceptual systems (e.g., color discrimination).

Implications for Future Work
It is worth noting that humans can become proficient at naming the spectral exponents of images
(or equivalently, fractal dimension, which is a linear transform of the exponent; Cutting &
Garvin, 1987; Kumar et al., 1993; Pentland, 1988). A neural ability to estimate the spectral drop-
off and exploit it has been speculated on and deserves additional attention (Billock, 2000;
Billock et al., 2001b; Campbell et al., 1978; Hammett & Bex, 1996; Rogowitz & Voss, 1990).
Taken together with the natural image regularities and perceptual pop-out findings discussed
earlier, this suggests that  is a key signature, both for images and for the visual systems that
evolved to transduce images. Of particular interest is the finding that, under some conditions
(nonlinear systems near threshold), adding noise can facilitate detection and identification of
some signals, including images (Repperger et al., 2001; Simonotto et al., 1997; Yang, 1998) – an
example of stochastic resonance as an image enhancement mechanism. Dynamic noise is more
effective than static (Simonotto et al, 1997). Because other studies of stochastic resonance show
that 1/f  noise can be more efficient than white noise in inducing stochastic resonance effects
(Billock & Tsou, 2007; Hangi et al., 1993; Nozaki et al., 1999), further studies of discrimination
in spatiotemporal fractal noise (at various contrast levels) would be warranted and might uncover
some practical applications.

Implications of Fractal Discrimination for Camouflage and Combat ID
Based on this and other work we can enumerate some implications for camouflage and combat
ID: (i) Natural images have 1/f  spatial amplitude spectra.  The most reasonable value of  for
general purpose camouflage is around 1.1. Particular environments will vary in this statistic and
in coloration.  (ii) Keeping the difference between the target and background less than 0.2 generally
avoids preattentive popout, but discrimination will still be possible using a point-by-point search.
(iii) Using many spatial scales makes camouflage effectiveness almost independent of distance.
(iv) For IFF purposes, friendly camouflage schemes should have different s than the unfriendly
camouflage patterns, but this may conflict with concealment goals. The best outcome would be
for hostile and friendly camouflage statistics to be on opposite sides of the background value, with
the friendly scheme not easily discriminable from background but discriminable from the hostile.
(v) For identification purposes, side-by-side viewing of sensor and reference images is
preferable. Sensor operators should be screened for spatial sampling problems (sub-clinical
amblyopia) by measuring their contrast sensitivity functions.  (vi) It may be possible to break
many camouflage schemes by adding filtered noise to the sensor images.  This seemingly
perverse aspect of stochastic resonance should be exploited if possible.  Since stochastic
resonance’s effectiveness is often dependent on the Fourier spectral qualities of the noise, fractal
camouflage may be particularly vulnerable (because the spectral qualities of simple fractals are
easily matched by varying one noise parameter). Multi-fractals may be less vulnerable in this
regard.  It would be ironic if the beautiful mathematical attributes of fractals (which give it so
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much utility in describing the natural environment and make it such an elegant solution to the
problem of designing camouflage) also prove to be its Achilles’ heel.
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