Adjustable autonomy in swarms of UAV

F. Legras - G. Coppin

ENST Bretagne
CNRS TAMCIC (UMR 2872)
FRANCE

Project context

- SMAART project ("Systèmes multi-agents adaptés à la reconnaissance de théâtre et l'auto-organisation des drones")
- Keywords: self-organized UAV swarms + authority sharing
- Functional demonstrator

Operational context Self-organizing UAV swarms

Operational Context

- Surveillance and intrusion management (tracking)
- Fixed and rotary wing UAVs + sensors network
- •~3-5 FW-UAV, ~12 RW-UAV

Strategic Air-Base

UAV self-organisation

- Applying stigmergy principle ("ant-based" behaviors)
- •2 different kinds of pheromone: surveillance and pursuit
- UAV guidance: direct objective or pheromone gradient
- Repelling effects for obstacles

Pheromone Grids

- Visit Pheromone
 - Produced by UAVs, evaporates
 - Repels patrolling UAVs
- Alarm Pheromone
 - Produced by contacts, diffuses
 - Attracts tracking UAVs, consumed

Modes & States

Mode	State/Symbol	Motivation
Patrol		Visit Pher.
Pursuit		Alarm Pher.
Auto		Visit/Alarm Pher.
Rally	9(Command
Hover		Command
Stopped		Command

Strategic Air-Base

Authority sharing Autonomy levels

Main questions

- Which modes of control ?
- How to adapt levels of automation ?
- Which interfaces ?

Sheridan et al.

1	The computer offers no assistance, human must do it all.	
2	The computer offers a complete set of action alternatives, and	
3	Narrows the selection down to a few, or	
4	Suggests one, and	
5	Executes that suggestion if the human approves, or	
6	Allows the human a restricted time to veto before automatic execution, or	
7	Executes automatically, then necessarily informs the human, or	
8	Informs him after execution only if he asks, or	
9	Informs him after execution if it, the computer, decides to.	
10	The computer decides everything and acts autonomously, ignoring the human.	

[Parasuraman, Sheridan &Wickens, 2000]

HFUAV - CERI May 2007

UAV: Decision Modes

Surveillance / Pursuit

if *pheroAlarm* ≠ 0 then Pursuit else Surveillance

Surveillance

Full Pheromone Grid

> Pheromone Grid (Threshold)

No Grid-Zone Info only

Displaying times of visit

level 6

level 10

Corresponding HCI element

Surveillance

Corresponding HCI elements

Zone info/control

Pursuit: contacts

- Alarms are automatically aggregated into Contacts (time & space threshold)
- Contacts are organized into Intrusions (contacts generated by same intruders)
 - Possibilities (new intrusion, affect to previous intrusion, *etc.*) sorted by likelihood by the system

Intrusion

Pursuit

Automatic Aggregatio n of Alarms

Pursuit

Choices Sorted by Likelihood

CTime before auto.

Auto. Most Likely

Contacts Intrusions UAV Locomotion Deploy.

Acquisition Analysis Decision Implementation

Pursuit

Position assigned manually by

Operator

Deployment of UAVs via an Intrusion

Pheromonebased decision

Contacts

Intrusions

UAV Deploy. Locomotion

Acquisition

Analysis

Decision

Implementation

Pursuit HCI elements

Conclusion

- Relying on a self-organized swarm of UAV
- Offering different levels of "autonomy" for control
 - in information display
 - in (individual) UAV mode selection
 - in UAV deployment
- Allowing to manage higher levels "semantic" patterns (intrusions)

Future work

Prototype demonstration on air base scenarios

- Experimental comparison of performances in adaptive, fully automatic or fully manual configuration
- Connect tool to existing management framework
- Experimentation in real size

Thanks for attention!

<u>francois.legras@enst-bretagne.fr</u> <u>gilles.coppin@enst-bretagne.fr</u>

coppin@mit.edu