Human Centered Research Involving UAVs in Military-Focused Domains

Raymond Hill
S. Narayanan
Jennie Gallimore
Wright State University

CERI Human Factors of UAVs Workshop
May 24, 2004
The WSU Research Approach

Humans in Complex Systems

- Interactive decision aids
- Optimization techniques
- Human-in-the-loop
- Planning under uncertainty
The Design Approach

Domain Analysis
Computing
Cognitive Systems Engineering

Domain Tasks Human Operator Models

Computational Infrastructure

Represent problem scenario and human operator models

Design multi-modal interfaces, and customize ROV autonomy

Answers to Questions in Problem Scenarios

Learn
Apply

Evaluate
Human Operator Issues

- How to build reusable and modular software components for representing complex human behavior exhibited in ROV problem scenarios.
- What is the right number of human operators and system autonomy for certain realistic mission scenarios?
- How can modeling results be used to specify the content and form of multi-modal interfaces?
- For what situations are immersive technologies useful?
- What should the visualizations be to provide situational awareness to the operators?
Interface Capabilities

- Multiple UCAVs
- A realistic environment
 - Built using simulations to drive information
- Predictive feedback
- Protection from wrong decisions
- Provide direction for action
- Provide multiple perspectives
- Provide ability to override automation
Study by Ruff (1997)

Experimental Design

Mixed Design (2x3x3)

<table>
<thead>
<tr>
<th>Level of Automation</th>
<th># of Vehicles Supervised</th>
<th>0% Error</th>
<th>5% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management by Exception</td>
<td>G</td>
<td>H</td>
<td>I</td>
</tr>
<tr>
<td>Management by Consent</td>
<td>D</td>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>No Decision Aid</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level of Automation</th>
<th># of Vehicles Supervised</th>
<th>Management by Exception</th>
<th>Management by Consent</th>
<th>No Decision Aid</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>6 Participants</td>
<td>6 Participants</td>
</tr>
<tr>
<td>M</td>
<td>N</td>
<td>O</td>
<td>6 Participants</td>
<td>6 Participants</td>
</tr>
<tr>
<td>J</td>
<td>K</td>
<td>L</td>
<td>6 Participants</td>
<td>6 Participants</td>
</tr>
</tbody>
</table>
UCAV HIL Interface
Recent Ground UAV
Optimization and Analysis Efforts
- Up to 500 targets daily
- Multiple assets with multiple depots
- Intelligence cell must allocate the targets to assets
- Operators must find route subject to
 - √ Time windows
 - √ Threats
 - √ Target priorities
 - √ Vehicle endurance
Defined an Architecture

- Problem classes
- Defined components for each level and built each component

- Technique
- Algorithms
- Heuristics
- Interfaces
- Applications
- Simulations

- Defined components
 - for each level and built each component

- Meses
- Prototypes
- Mapping
- Software
- Simulations

- Universal Vehicle Router
- Core AFIT Router
- Solvers
- Genetic Algorithm
- Linear Program
- General TS
- WRP Tabu Search

- Java Virtual Machine
- Windows
- MacOS
- Solaris
- Linux
- WWW
Built an Application Level

The application is the only portion of the AFIT router presented to the user. All other portions are hidden.

Users liked this feature
Details within Application Level

Shooting/Trucking

General TS

Core AFIT Router

Mapping Software

Simulations

Prototype Application

Mapping Framework

Tracking

AFIT/VIP

Solaris

Linux

Java Virtual Machine

WWW

Other VRPs/TSPs

Linear Program

Genetic Algorithm

Etc.

Solvers

VRP Tabu Search

Details within Application Level

Summary

- **Total:** 100
- **Enabled:** 96
- **Earliest time window:**
- **Latest time window:** 06:39 h + 2 days

<table>
<thead>
<tr>
<th>Site</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Service Time</th>
<th>Priority</th>
<th>Requirement</th>
<th>Earliest Allowed</th>
<th>Latest Allowed</th>
<th>Earliest Required</th>
<th>Latest Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1</td>
<td>520000 N</td>
<td>750000 E</td>
<td>90</td>
<td>3</td>
<td>EO/IR</td>
<td>06:11 h</td>
<td>07:51 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 2</td>
<td>450000 N</td>
<td>700000 E</td>
<td>90</td>
<td>3</td>
<td>SAR</td>
<td>03:33 h</td>
<td>06:13 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 3</td>
<td>620000 N</td>
<td>690000 E</td>
<td>90</td>
<td>3</td>
<td>SAR</td>
<td>00:25 h</td>
<td>03:05 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 4</td>
<td>600000 N</td>
<td>660000 E</td>
<td>90</td>
<td>3</td>
<td>Laser</td>
<td>21:01 h</td>
<td>23:41 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 5</td>
<td>420000 N</td>
<td>650000 E</td>
<td>90</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site 6</td>
<td>160000 N</td>
<td>420000 E</td>
<td>90</td>
<td>3</td>
<td>SAR</td>
<td>03:30 h</td>
<td>10:00 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Coordination and Control of Cooperative Swarms of Unmanned Aerial Combat Vehicles via a Virtual Testbed Environment
Themes of Effort

- Agent models and heterogeneous agents within the swarm
- Swarm limitations in terms of size, capability, cooperation, or loss of cohesiveness
- AOC control issues to include number of controllable agents, information presentation and influence on the swarm
Research Questions

- What degree of cooperation is attainable?
- Can heterogeneous agent cooperation be accommodated?
- Can the swarm enlarge or constrict gracefully?
- Can emergent behavior be recognized and then beneficially controlled?
The “Control Cube”
Architecture Requirements

- Interactivity
- Multi-user connectivity
- Reconfigurable user interfaces
- Representation of information flow
- Analytical-based and controller-based information presentation
- Modularity and reusability of software architecture components
Activities Thus Far

- Project initiated in March 2004
- Establishing link with AFRL/MN for potential collaboration and technology transition
- Conducting the domain analysis and task analysis from which to define, design, and realize the software abstractions required to realize our virtual test environment
Research Challenges

- Models of agent cooperation
- Interfaces for human control of swarms of UCAVs
 - √ Protocol for human-computer interaction
 - √ Control cues for effective coordination
- Examine network-centric models involving swarms of UAVs
 - √ How to use emergent networks
 - √ How to guard against their attack
Questions?